Terwin models μ 400P, μ 500PT, μ 600P & μ 700PT Process Indicators/Alarm Controllers

Modbus Communications Manual

Terwin Instruments Limited, Winterbeck Industrial Estate, Bottesford, Nottinghamshire,

NG13 0AU, England Tel: +44(0) 1949 842000 Fax: +44 (0) 1949 842004 Email: <u>info@terwin.com</u> Web site: <u>www.terwin.com</u>

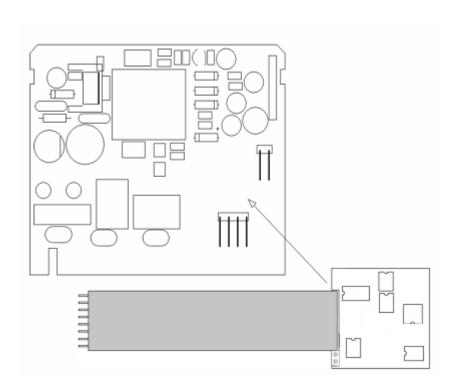
 $\mu400P$ $\mu600P$ $\mu500PT$ & $\mu700PT$ Modbus Instructions (B) Page 1 of 19

INDEX

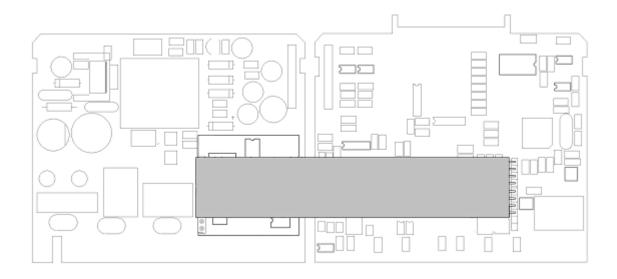
1. INTRODUCTION	2
1.1. Installing the Modbus card	2
2. RS485 COMMUNICATIONS	4
2.1. RS485 Standard	4
2.2. Connections	4
3. MODBUS PROTOCOL	5
3.1. Introduction	5
3.2. Transmission Mode	5
3.3. Message Structure	5
3.3.1 Address	5
3.3.2 Function	6
3.3.3 Data	6
3.3.4 CRC	6
3.4. Description of the functions	7
3.4.1 Read N bits	7
3.4.2 Read N registers	8
3.4.3 Write a bit	9
3.4.4 Write a register	9
3.5. Error Codes	10
4. OPERATION OF THE INDICATORS	12
4.1. Modbus table of addresses	13
4.1.1 Modbus bit addresses	13
4.1.2 Modbus register addresses	14

1. INTRODUCTION

Read this chapter before powering the unit.


This manual is intended for users requiring digital communications with the MODBUS protocol for supervision, control and configuration of processes via the models µ400P or µ500PT indicators from TERWIN.

It is considered that the user has basic familiarity with communications protocols, and with operation of these series indicators (see the instructions manuals for operation of these indicators).


1.1. Installing the communications card

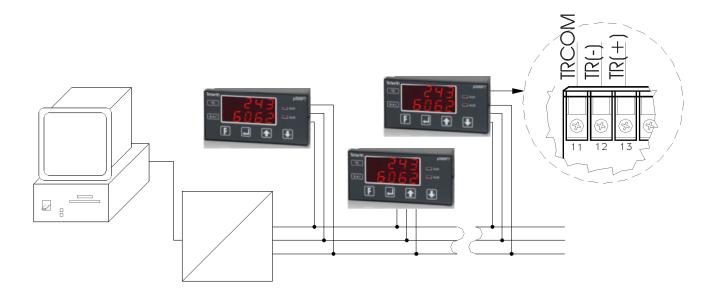
Before installing the Modbus module, the indicator must be extracted from its enclosure and the board with output connectors must be identified.

Install Modbus module carefully, in a way that all terminals from $\mu400P/\mu500PT$ power supply circuit fit into Modbus module connectors placed on the bottom side.

Plug the other Modbus module connector to the $\mu400P/\mu500PT$ CPU board as shown in the figure below.

Once the Modbus module is installed, the communications are accessible from terminals 11,12 and 13 (see section 2.2).

Power up the instrument and set the menu option OPT to 1 to activate the communications module (see section 4. for more parameters)


2. RS485 COMMUNICATIONS

2.1. RS485 Standard

The RS485 communications standard enables connection of one or more instruments via two conductors with a maximum length of 1200 m. In addition, it is advisable to connect a ground/shield wire as a common, in order to provide the line with additional noise protection.

2.2. Connections

The $\mu400P$ and $\mu500PT$ models admit connections to RS485 buses via two conductors plus one additional earth one. To use an RS485 connection from a PC, an RS-3232/RS485 converter needs to be inserted. If the converter provides RS485 communications to 4 conductors, the terminals marked as TX- should be connected to RX- and, in turn, the terminals marked TX+ to RX+. In this way, two lines will be obtained, which we will identify as TR+ and TR-.

In addition, just after the last instrument in the line, a 220-Ohm termination resistance should be connected in the line between TR+ and TR-.

Run the communications cables along different paths from the power leads.

The communications leads can be run next to signal leads if these are not exposed to interference source. We recommend using twisted pair cables, with a capacity between conductors of less than 60pF, rated characteristic impedance at 100 kHz of 100 Ohm, and a rated resistance of less than 100/Ohm/km (minimum 24 AWG conductors).

3. MODBUS PROTOCOL

3.1. Introduction

The MODBUS protocol defines a message structure that can be recognised by different units, regardless of the type of communications network used. The protocol describes the process for accessing information from a unit, how this should respond, and how error situations are notified.

The MODBUS protocol defines a digital communications network with a single master and one or more slave units.

3.2. Transmission mode

The transmission mode is the structure of the units of information contained in a message. The MODBUS protocol defines two transmission modes: ASCII (American Standard Code for Information Interchange) and RTU (Remote Terminal Unit). In a network of units connected by the MODBUS protocol, units **CANNOT** be shared by using different transmission modes.

The μ 400P and μ 500PT communicate in RTU mode.

3.3. Message structure

A message consists of a sequence of characters that can be interpreted by the receiver. This sequence of characters defines the frame.

To synchronize the frame, the receiver units monitor the time interval elapsing between characters received. If an interval greater than three and a half times the time required to transmit a character is detected, the receiver unit ignores the frame and assumes that the following character it receives will be an address.

3.5T	ADDRESS	FUNCTION	DATA	CRC	3.5T
3.5 bytes	1 byte	1 byte	N bytes	2 bytes	3.5 Bytes

3.3.1 Address

The address field is the first of the frame after the synchronization time. It indicates the unit the message is addressed to. Each unit in the network must have a unique address assigned, other than zero.

Likewise, when a unit responds to a message, it must first send its address so that the master recognises the source of the message.

MODBUS enables messages to be sent to all the units at the same time, using the zero address to do this. However, to prevent conflicts with other units in the network, the μ 400P and μ 500PT do not accept this type of message.

3.3.2 Function

The function field tells the unit addressed what type of function it is to perform. The μ 400P and μ 500PT models accept the following functions:

Code	Function
01 or 02	Read N bits (max. 255)
03 or 04	Read N registers (max 127)
05	Write 1 bit
06	Write 1 register
07	Read instrument status byte

See section 3.4 for a description of the functions

3.3.3 Data

The data field contains the information needed for the units to be able to perform the functions requested, or the information sent by the units to the master in response to a function.

3.3.4 CRC

The CRC field is the last in the frame and enables the master and the units to detect transmission errors. Occasionally, due to electric noise or interference of any other kind, certain modifications may occur to the message while it is being transmitted. The error control by CRC ensures that the receiver units or the master will not perform wrong actions due to accidental modification of a message.

The units **DO NOT** send any response when they detect a CRC error in the frame received.

For CRC calculation, neither the stop nor parity bits are considered, just the data. The sequence for CRC calculation is described as follows:

- 1. Load a 16-bit register to 1's.
- 2. Perform an exclusive OR of the first 8 bits received with the high register byte, saving the result in the register.
- 3. Shift the register one bit to the right.
- 4. a) If the overflow bit is 1, perform an exclusive OR of the value 1010 0000 0000 0001 with the content of the register and save it in the register.
- 4. b) If the overflow bit is 0, go back to step 3.
- 5. Repeat steps 3 and 4 until 8 bit shifts have been made.
- 6. Perform an exclusive OR of the following byte of the frame with the 16-bit register.
- 7. Repeat steps 3 to 6 until all the bytes in the frame have been processed.
- 8. The content of the 16-bit register is the CRC, which is added to the message with the most significant bit first.

3.4. Description of the functions

3.4.1 Read N bits (Function Code 01 or 02)

This function enables the user to obtain the logical values (ON/OFF) of the bits of the unit addressed. The response data are packaged in bytes so that the first bit requested occupies the least significant bit of the first data byte. The next ones follow on so that, if they are not a multiple of 8, the remaining bits of the last byte are set to zero.

Master-unit frame:

Address of unit	Function Code (01 or 02)	bit		be rea	of bits to d (max. 55)	CI	SC .
1 byte	1 byte	MSB	LSB	MSB	LSB	MSB	LSB

Unit-master frame:

Address of unit		Number of bytes read		•••••	Last data byte	CI	SC
1 byte	1 byte	1 byte	1 byte	•••••	1 byte	MSB	LSB

For example: Read 2 bits from bit with address 4, of indicator with address 2.

Master-unit:

Address of unit	Function Code	Address of first bit			of bits to	CRC	
02	01	00	04	00	02	FC	39

Unit-master:

Address of unit	Function Code	Number of bytes read First data byte		CI	RC
02	01	01	03	11	CD

The response tells us that the bits of address 4 (AL1) and 5 (AL2) are set to 1. So, alarms AL1 and AL2 are activated. The response has assigned zeros to the addresses which have not been asked for from the master, which does not mean that their real value is zero.

3.4.2 Read N Registers (Function Code 03 or 04)

This function enables the user to obtain the registers value of the unit addressed. These registers store the numerical values of the indicator's parameters and variables. The range of the data goes from 0 to 65536 (see section 4.2). The data corresponding to addresses of registers going over the last valid address of parameters are returned as zero (00 00).

Master-unit frame:

Address of unit	Function Code (03 or 04)	Address of first register		registe re	ber of ers to be ead c. 127)	CF	RC
1 byte	1 byte	MSB	LSB	MSB	LSB	MSB	LSB

Unit-master frame:

Address of unit	Function Code	Number of bytes read	Value of first register		•••••	Valu la regi	st	CI	€C
1 byte	1 byte	1 byte	MSB	LSB	••••	MSB	LSB	MSB	LSB

For example: Read 3 registers as from the register with address 2, of the indicator with address 2.

Master-unit:

Address of unit	Function Code		Address of first Number of register to be read		•	CRC	
02	03	00	02	00	02	A4	38

Unit-master:

Address of unit	Function Code	Number of bytes read	f	ue of irst gister	Value of second register		lo	ue of ast jister	CI	RC
02	03	06	00	00	00	C8	00	01	80	A6

The response tells us that the registers of address 2 and 3 (SP.A2) and 4 (C.A1) have, respectively, the hexadecimal value of 000000C8 and 0001. So, the corresponding decimal values are: SP.A2=200 and C.A1=1.

3.4.3 write a bit (Function Code 05)

This function enables the user to set the logical values (ON/OFF) of the bits of the unit addressed. To set a bit value of 0, 00h must be sent and to set a bit value of 1t, 01h or FFh. This value should be written in the **most significant byte**.

Master-unit frame:

Address of unit	Function Code (05)	Addre	Address of bit		of bit	CRC	
1 byte	1 byte	MSB	LSB	MSB	LSB	MSB	LSB

Unit-master frame:

Address of unit	Function Code (05)	Address of bit		Value of bit		CRC	
1 byte	1 byte	MSB	LSB	MSB	LSB	MSB	LSB

For example: Set a value 1 to the bit of address 8, of the indicator with address 2.

Master-unit:

Address of unit	Function Code	Address of bit		Value	of bit	CI	CRC	
02	05	00	08	01	00	4D	AB	

Unit-master:

Address of unit	Function Code	Address of bit		Value	of bit	CI	RC
02	05	00 08		01	00	4D	AB

The response tells us that bit 8 (Alarm 1 mask) has been set, thus the Alarm 1 is masked.

3.4.4 Write a register (Function code 06)

This function enables the user to modify the content of the parameters of the unit addressed. The values are sent scaled in accordance with the scale factor corresponding to each parameter, in a range between 0000h and FFFFh (see section 4.2).

Master-unit frame:

Address of unit	Function Code (06)	Address of register		Valu regi	e of ister	CI	RC
1 byte	1 byte	MSB	LSB	MSB	LSB	MSB	LSB

Unit-master frame

Address of unit	Function Code (06)	Address of register		Value of register		CI	RC
1 byte	1 byte	MSB	LSB	MSB	LSB	MSB	LSB

For example: Assign the value 4 (0004h) to the register of address 04, of the indicator with address 2.

Master-unit:

Address of unit	Function Code	Address of register		Valu regi	e of ister	CI	CRC	
02	06	00	05	00 04		98	3B	

Unit-master:

Address of unit	Function Code	Address of register		Value of register		CI	SC.
02	06	00	05	00	04	98	3B

The response tells us that register 5 (Alarm 2 configuration) has received the value of 4 (Alarm 2 is Low, Reverse action).

Some parameters use two registers (Set points, bias, etc...) to store their values. To set values greater than 65535 o below 0 to these parameters, both registers must be set correctly. e.g. setting "Bias channel 1" to -200 (fffff38h) should be done by writing ffffh to register 28 and ff38h to register 29. It's recommended to write the HIGH WORD first.

3.5. Error codes

Generally, errors appearing during operations to access and program units relate to invalid data in the frame. When a unit detects an error of this type, the response to the master consists of the unit's address, the function code, the error code and the CRC. To indicate that the response is an error notification, the most significant bit of the function code is set to 1.

The µ400P and µ500PT models use the following error codes:

Error code	Description
01	Invalid function
02	Invalid data address field
03	Invalid data field
06	Busy: Accessing the EEPROM.

With reference to these models, the following cases should be considered:

If a unit receives a request for reading of N bits and goes over the last accessible address, the indicator sends the value 00 in response for non-existent addresses.

If a unit receives a request for reading of N registers and goes over the last accessible address, the indicator sends the value 00 00 in response for non-existent addresses.

If a unit receives a request for writing a register defined as "read only", the instrument sends error code 02 in response.

If a unit receives a request for writing a register and a user is modifying a parameter from the keyboard at this moment, the indicator sends error code 06 in response.

If the address of the first register is greater than the last valid address, the indicator sends error code 02 in response.

If a unit receives a request with an invalid function, the indicator sends error code 01 in response.

If a unit receives a request for writing of a register or bit corresponding to an option not installed in the instrument, the indicator sends error code 03 in response.

4. OPERATION OF THE INDICATORS

Models μ 400P and μ 500PT equipped with an RS485 interface for Modbus connection must have the **OPT** parameter set to 1.

The communications are made with a format of 1 start bit, 8 data bits and 1 stop bit. In addition, four parameters can be configured.

Addr	Address	of the inc	dicator in the Modbus network			
	Minimur	n value	0(Modbus disabled)			
	Maximu	m value	255			
Speed	Baud Ro	ate				
	Value	Baud R	ate			
	0	2400 bp	OS			
	1	4800 bp	OS			
	2	9600 bp	OS			
	3 19200 bps					
Prty	Parity					
	Value	Parity				
	0	None				
	1	Even				
	2	Odd				
dLAy	Delay Time					
	Minimur	n value	0			
	Maximu	m value	10			

The dLAY value is the indicator's waiting time before answering a frame sent by the master. The time is the result of multiplying the dLAY value by 10 ms. This parameter is required when delays occur in the switching of the receive/send modes in the RS232/RS485 conversion units. In this way, a wait time is created, enabling the communications to be synchronized and conflicts prevented.

4.1. Modbus table of addresses

There follows a list of all the parameters available via communications in the μ 400P and μ 500PT models. All the keyboard-accessible parameters are available via the communications. However, due to the fact that the μ 400P and μ 500PT models can be configured for a great variety of applications, if read or write of a parameter relating to an option not configured in the instrument is accessed, the instrument responds with a code 03 error message (see section 3.5).

4.1.1 Modbus bit addresses

MODBUS bit address	Parameter
0	1= over range channel 1*
1	1=under range channel 1*
2	1= over range channel 2*
3	1=under range channel 2*
4	1=AL1 Activated *
5	1=AL2 Activated *
6	0= Channel 1 AL1 / 1= Channel 2 AL1 *
7	0= Channel 1 AL2 / 1= Channel 2 AL2 *
8	1 = AL1 mask activated
9	1 = AL2 mask activated
10	0 = °C / 1 = °F
11	$0 = \mu 400P / 1 = \mu 500PT^*$
12	Security level
13	1= Tare activated *
14	1= Menu is accessed by user *

*Read only

4.1.2 Modbus registers addresses

Add	Parameter	Display Reading	Position	μ400P	μ 5 00PT	Low Limit	High Limit	Notes
0	Alarm 1 Set Point*	SP.A1	HIGH WORD	RW	RW	Probe	Probe	
3	Alarm 2 Set Point*	SP.A2	HIGH WORD	RW	RW	Probe	Probe	
5	Alarm 1 Configuration	C.A1		RW	RW	0	7	
7	Alarm 2 Configuration	C.A2		RW	RW	0	7	
8 9	Alarm 1 Hysteresis*	Hy.A1	HIGH WORD LOW WORD	RW	RW	Probe- SP.A1	0	
10	Alarm 2 Hysteresis*	HY.A2	HIGH WORD	RW	RW	Probe- SP.A2	0	
13	Channel Alarm 1	CH.A1		NP	RW	2	1	
15	Channel Alarm 2	CH.A2		NP	RW	2	1	
17	Alarm 1 Mask	NAS.A1		RW	RW	1	0	Activate/ No activate
19	Alarm 2 Mask	NAS.A2		RW	RW	1	0	Activate/ No activate
21	Alarm 1 activation delay	dLY.A1		RW	RW	300	0	Seconds
23	Alarm 2 activation delay	dLY.A2		RW	RW	300	0	Seconds
25	Alarm 1 Manual Deactivation	Lch.A1		RW	RW	1	0	Manual/Auto
27	Alarm 2 Manual Deactivation	Lch.A2		RW	RW	1	0	Manual/Auto
28 29	Bias channel 1*	BIAs.1	HIGH WORD LOW WORD	RW	RW	99999	-9999	
30 31	Bias channel 2*	BIAS.2	HIGH WORD LOW WORD	NP	RW	99999	-9999	

Add	Parameter	Display Reading	Position	μ 4 00P	μ500PT	Low Limit	High Limit	Notes
33	Input probe	Inp		RW	RW	(µ400P) 14 (µ500PT) 12	0	0:J 1:L 2:K 3:N 4:T 5:R 6:S 7:RTD -200 a 600 8:RTD -99.9 a 200.0 9:Linear 0-5V 10:Linear 0-10V 11:Linear 0-20mA 12:Linear 4-20mA 13:Pressure 14:Gauge
35	Units	Unit		RW	RW	1	0	0: °C, 1: °F
37	Decimal point (linear input)	dP		RW	RW	3	0	
38 39	Start Linear Scale*	In.L	HIGH WORD LOW WORD	RW	RW	End	-9999	
40	End Linear Scale*	In.H	HIGH WORD	RW	RW	99999	Start	
43	Decimal point (pressure)	dP		RW	NP	3	0	
44 45	FSV pressure*	FSU	HIGH WORD LOW WORD	RW	RW	99999	0	
47	Display Filter (pressure)	FILtr		RW	RW	99	0	% Filtered
51	Decimal Point (gauge)	dP		RW	NP	3	0	
52 53	FSV gauge	FSU	HIGH WORD LOW WORD	RW	NP	99999	0	
69	Modbus Address	Addr		RW	RW	240	0	

Add	Parameter	Display Reading	Position	µ400P	μ500PT	Low Limit	High Limit	Notes
71	Baud Rate	Speed		RW	RW	4	0	0: 2,400 1: 4,800 2: 9,600 3: 19,200
73	Parity	Prty		RW	RW	2	0	0: None 1: Even 2: Odd
75	Modbus Delay	dLAy		RW	RW	10	0	
76 77	Password	PASS	HIGH WORD	RW	RW	99999	0	
79	Protection Level	LEUEL		RW	RW	1	0	
81	Pressure Zero Calibration Value	Internal		RW	RW	65535	Span Value	0 stands for the voltage value
83	Tare	Internal		R	NP	65535	0	corresponding to the start of the
85	Pressure Span Calibration Value	Internal		RW	RW	Zero Value	0	pressure scale. 65535 stands for the voltage value corresponding to the end of the pressure scale.
87	Gauge Zero (mV) * 100	ZEr0.r		RW	NP	Gauge Span	-300	
89	Gauge Span (mV) * 100	SPAN.r		RW	NP	3700	Gauge Zero	
90 91	Channel 1 Reading*	Channel 1 Display Value	HIGH WORD LOW WORD	R	R	Probe	Probe	
92 93	Channel 1 High Res Reading	Internal	HIGH WORD LOW WORD	R	R			

Add	Parameter	Display Reading	Position	µ400P	μ500PT	Low Limit	High Limit	Notes
94 95	Channel 2 Reading *	Channel 2 display Value	HIGH WORD	NP	R	Probe	Probe	
96 97	Channel 2 High Res Reading	Internal	HIGH WORD LOW WORD	NP	R			
99	Number of Channels	Internal		R	R	2	1	
143	Pressure Calibration	Internal		RW	RW	7	0	Write 0: Activates the automatic calibration of the pressure transducer. Read: Shows the last state after a transducer calibration: 0: The calibration couldn't start or the instrument has never been calibrated through Modbus before. 1: Waiting for Zero calibration 2: Zero calibration 3: Waiting for Span calibration 4: Span calibration 5: Calibration Failed 6: Waiting for SAVE (ONLY if the calibration started from the instrument keypad) 7: Calibration finished successfully

- R: Read Only Register, W: Write enabled Register NP: Not valid register.
- All the parameters are two's complement Integers.
- -Some parameters can have a value greater than 65535 or below 0. For that reason they are stored in 2 Modbus registers. To write a negative value in any of these registers, note that the High Word has to be filled with ones according to their two's complement nature. It's recommended to write the High Word first.
- -High Res values are stored in 4 bytes. To get the actual value of these registers, they should be divided by 65535.

^{*}If the input probe (inP) is number 8 (RTD /-99.9...200.0), this registers should be divided by 10. If the input probe is linear (inP = 9,10,11 or 12), or pressure or gauge (inP = 13 o 14) in line with the value of dP (0, 1 or 2), they should be divided by 1, 10 or 100 respectively.